## Effectiveness of mRNA COVID-19 Vaccines **Against the Delta Variant Among 5.6M Medicare Beneficiaries 65 Years and Older**

Weekly update of September 28, 2021









### **Executive Summary**

## Project Salus provides answers to these questions

Basic questions which require data-driven answers

Is vaccine effectiveness (VE) waning over time?

Is VE **reduced** for the **Delta** variant?

Does the need vary by sub-population?

- VE of both mRNA vaccines appears to wane over time in this large 5.6M US-based 65 & over vaccinated cohort
- Risk of breakthrough hospitalization increases with time elapsed since mRNA vaccination with odds ratio increasing to 2.5 at 6 months post vaccination
- VE against Delta breakthrough hospitalization (62%) exceeds
   VE against Delta infection (41%)
- Prior COVID-19 infection has a major protective effect against breakthrough hospitalization
- Older age groups (75-84 & 85 and older) experienced further reduction in vaccine protection against hospitalization
- Hospitalization rate (21% vs 32%) and death rate (2% vs 12%) of breakthrough infections lower than rates observed in Covid-19 cases in pre-vaccination pandemic phase in 2020

Graphic adapted from CDC Presentation ACIP Meeting August 30, 2021 Oliver, S. Framework for Booster Doses of COVID-19 Vaccines





### Salus Platform for COVID-19 Analyses

### **VE Study Attributes**

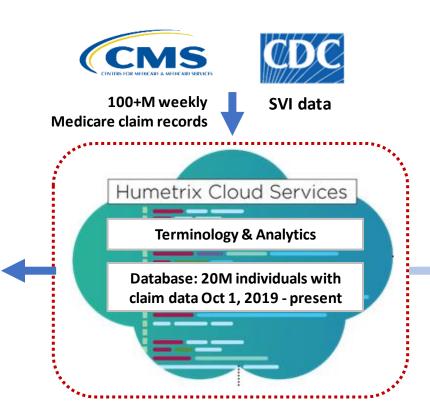
#### Cohort

20M Medicare beneficiaries nationwide with 16M individuals 65 years and older

#### **Exposure**

5.6M fully vaccinated with 2.7M Pfizer and 2.9M Moderna

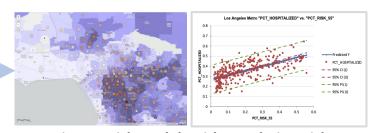
#### Period of study


January - August 21 2021

#### **Breakthrough Key Metrics**

161K Breakthrough cases

33K Breakthrough hospitalizations


10.4K requiring ICU admissions



### Other Platform Applications



**Nationwide Mapping of COVID-19 Outcomes** Hospitalizations, ICU, Ventilator Rx, Deaths



**Disease Risk Models with Population Risk Profiling: Severe COVID-19 risk with Validation with Hospitalization Rates** 



**Vaccination Mapping overlaid on severe** 



COVID-19 risk



### Salus Breakthrough Analysis Methodology and Limitations

- **Breakthrough case definition**: new COVID-19 diagnosis (by COVID-19 ICD-10 code) occurring no earlier than 2-weeks post the second vaccine dose (see appendix for more details on case definition)
- Breakthrough analysis methodology: to estimate weekly breakthrough cases and hospitalizations we multiplied our Medicare claim-based weekly breakthrough case counts and hospitalization counts by the corresponding weekly ratio of the claims-based vaccination rate to the CDC vaccination rate to compensate for missing COVID-19 vaccination data from Medicare claim data (Medicare claims only provide ~45% of the published CDC vaccination rate in the 65 and over age group)
- Breakthrough data limitations:
  - Possible overestimation of breakthrough rates due to breakthroughs clinically defined with a COVID-19 diagnosis but not confirmed by PCR or antigen test (unavailable in claim data)
  - Possible overestimation of breakthrough rates due to assuming identical breakthrough rates between individuals with claim-based vaccination data and those lacking vaccination data in their claims
  - Overestimation of breakthrough rates would lead to underestimating vaccine VE against breakthrough infections and breakthrough hospitalizations





### **COVID-19 Case Definitions**

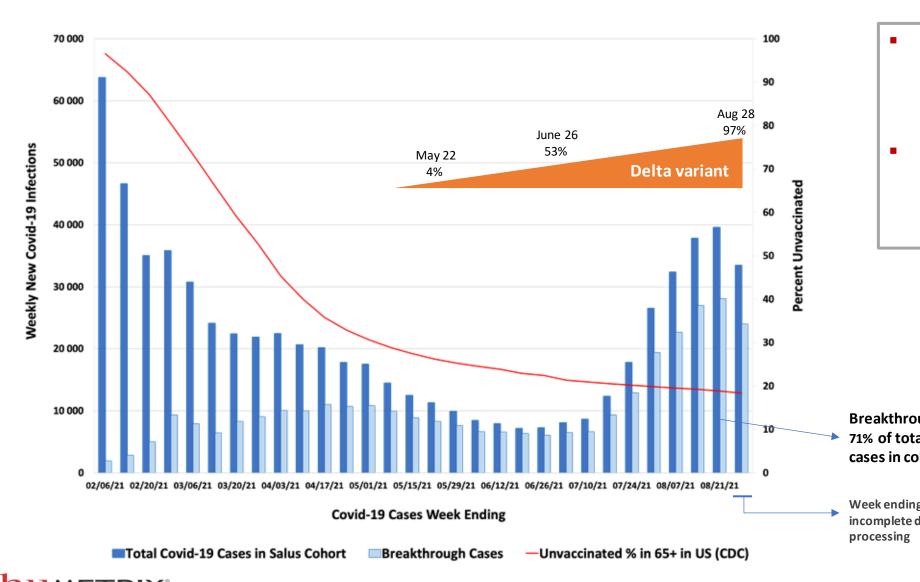
- **COVID-19 case definition**: COVID-19 ICD-10-CM code U071 found in any claim type. Date of diagnosis based on first claim with U071. Note: 29% have either a COVID-19 PCR or antigen test in a claim.
- COVID-19 breakthrough infection definition: COVID-19 diagnosis more than 2 weeks after second dose
  of mRNA vaccine or single dose of J&J vaccine with no COVID-19 ICD-10 code U071 between first and
  second dose of mRNA vaccine. Note: 36% of breakthrough cases have either a COVID-19 PCR or antigen
  test in a claim.
- COVID-19 hospitalization definitions: (1) Inpatient claim with primary admitting diagnosis ICD-10-C code U071 with data of admission within 14 days after COVID-19 diagnosis or date of discharge within 10 days of post hospitalization COVID-19 diagnosis OR (2) Carrier claim with ICD10 code U071 and place of service code = 21 and date of service either 14 days after COVID-19 diagnosis or 10 days before COVID-19 diagnosis.
- **COVID-19 associated death definitions**: (1) Inpatient claim patient discharge status code = 41 (expired in facility) OR (2) MBSF file Date of Death are within 60 days of COVID-19 diagnosis. 85% of COVID-19 deaths using this definition occurred within 30 days and 72% within 20 days of COVID-19 diagnosis





### Key Breakthrough vs. Pre-Vaccination COVID-19 Metrics

Among 5.6M fully vaccine immunized Salus cohort members aged 65 and older (2.7M Pfizer and 2.9M Moderna), as of September 10, 2021:


- 2.9% cumulative breakthrough rate
- 21% hospitalization rate in breakthrough infections, reduced by one third of 32% hospitalization rate March – December 2020
- 31% breakthrough hospitalizations include ICU care, equivalent to 32% ICU rate March December 2020
- **2.1% death rate** in breakthrough infections, <u>reduced six-fold from</u> 12% death rate March December 2020



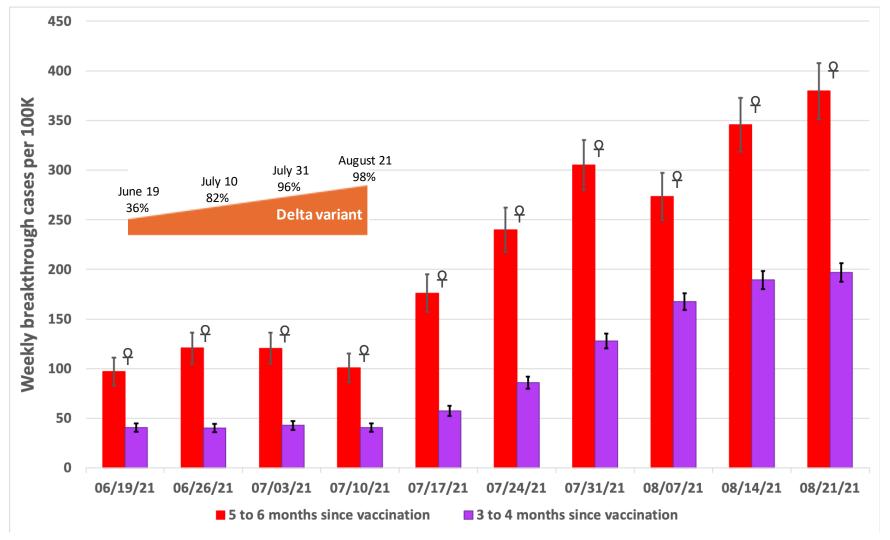


### Total & Breakthrough Cases in the 65 Years and Older Salus Cohort

#### **Project Salus**



- As Delta variant became predominant, COVID-19 cases increased five-fold in the >=65 population
- In this 80% vaccinated >=65 population, an estimated 71% of COVID-19 cases occurred in fully vaccinated individuals


Breakthrough cases = 71% of total Covid-19 cases in cohort

Week ending 08/28/21, data incomplete due to lag in claims processing





## Is mRNA Vaccine Effectiveness Against Delta Breakthrough Infection Waning Over Time in 65 Years and Older Salus Cohort?



Breakthrough infection rates
 5-6 months post vaccination are twice as high as 3-4 months post vaccination

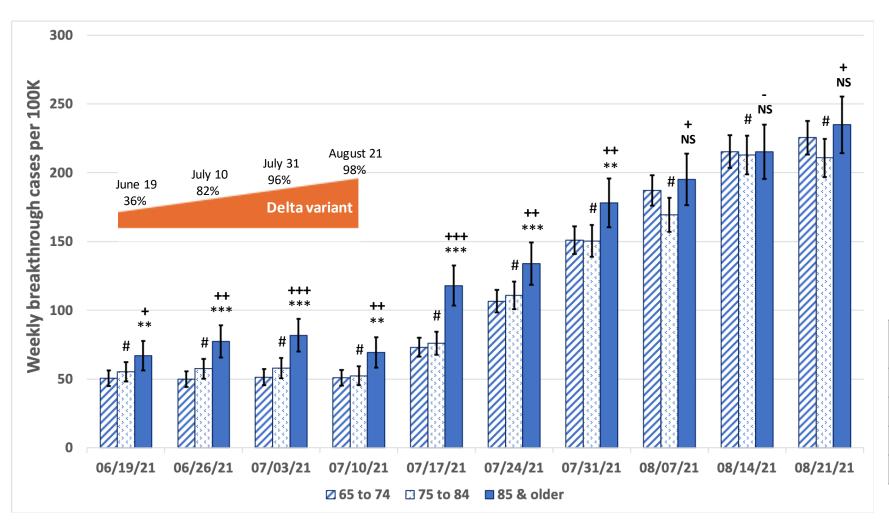
95% CI

P Breakthrough infection rates 5-6 months since vaccination > 3-4 months since vaccination P < 0.001





## Age Distribution of Vaccinated Groups in the 65 Years and Older Cohort


| Vaccinee Group              |            |     |  |  |  |
|-----------------------------|------------|-----|--|--|--|
| 5-6 months post vaccination |            |     |  |  |  |
| age groups                  | 65 to 74   | 24% |  |  |  |
|                             | 75 to 84   | 33% |  |  |  |
|                             | 85 & older | 43% |  |  |  |
| 3-4 months post vaccination |            |     |  |  |  |
| age groups                  | 65 to 74   | 51% |  |  |  |
|                             | 75 to 84   | 35% |  |  |  |
|                             | 85 & older | 14% |  |  |  |

Could higher proportion of 85 years and older members in first vaccinated group explain reduced VE?

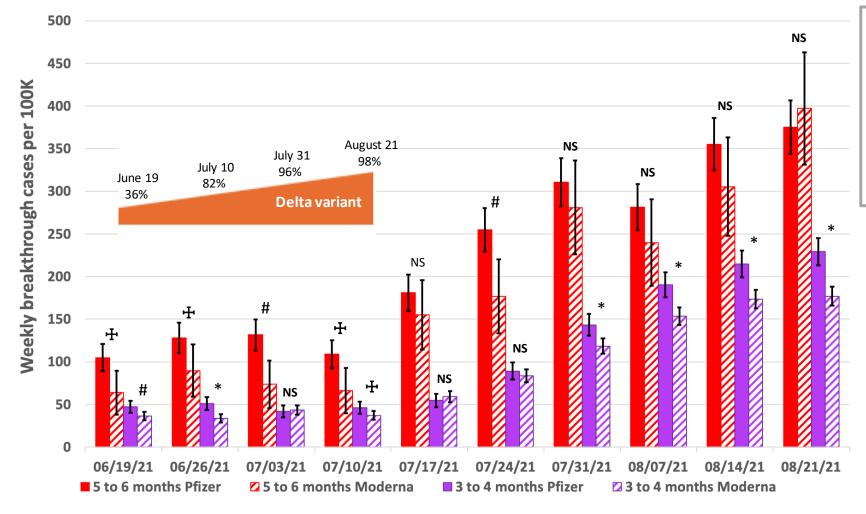




## Does Age Affect Vaccine Effectiveness Against Breakthrough Infections in the 65 Years and Older Cohort?



 Age has a minor contribution to the reduced vaccine protection seen in the group vaccinated 5-6 months ago


95% CI

|           | Over 85 > 75 to 84 | Over 85 > 65 to 74 | 75 to 84 ><br>65 to 74 |
|-----------|--------------------|--------------------|------------------------|
| P < 0.001 | +++                | ***                | none                   |
| P < 0.01  | ++                 | **                 | none                   |
| P < 0.05  | +                  | none               | none                   |
| P > 0.05  | -                  | NS                 | #                      |

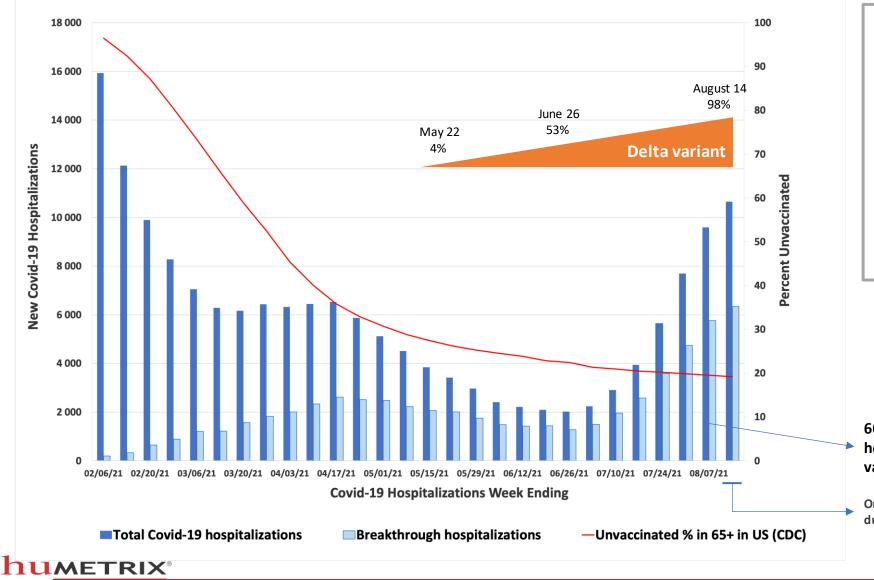




## Are There Differences in Waning Effectiveness Between Pfizer-BioNTech and Moderna Vaccines in the 65 Years and Older Cohort?



- Waning immunity are seen with both
   Pfizer-BioNTech and Moderna vaccines
   during Delta phase of the pandemic
- Moderna vaccine offers better protection than Pfizer vaccine for individuals vaccinated 4 months prior for weeks ending after July 31


95% CI

| Breakthrough infection rate<br>Pfizer > Moderna |    |  |  |  |
|-------------------------------------------------|----|--|--|--|
| P < 0.001                                       | *  |  |  |  |
| P < 0.01                                        | #  |  |  |  |
| P < 0.05                                        | 中  |  |  |  |
| P > 0.05                                        | NS |  |  |  |



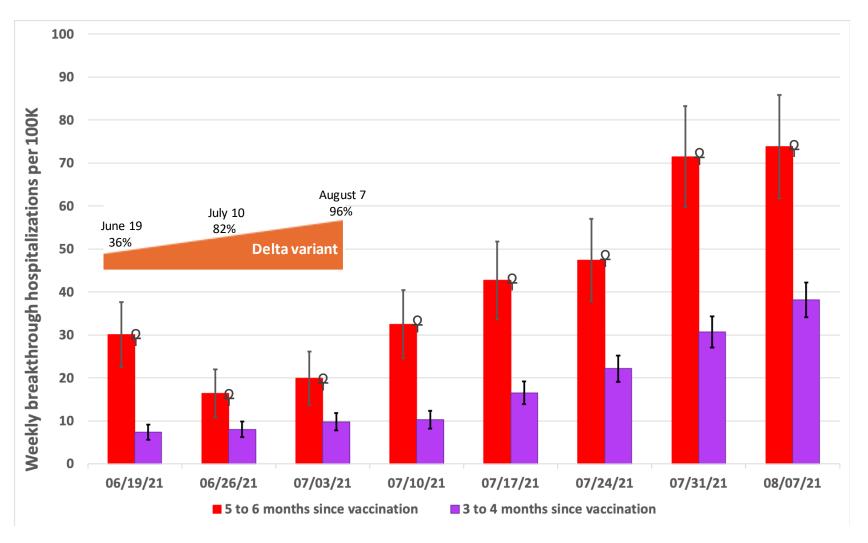


## Total & Breakthrough Hospitalizations in the 65 Years and Older Cohort



- As Delta variant surged to over 50% in June, COVID-19 hospitalizations more than doubled, reversing the prior trend of decreasing hospitalizations since April
- In this 80% vaccinated 65+
  population, an estimated 60% of
  COVID-19 hospitalizations occurred
  in fully vaccinated individuals in the
  week ending August 7th

60% of COVID-19 hospitalizations are in vaccinated individuals


On 08/14/21, data incomplete due to lag in claims processing



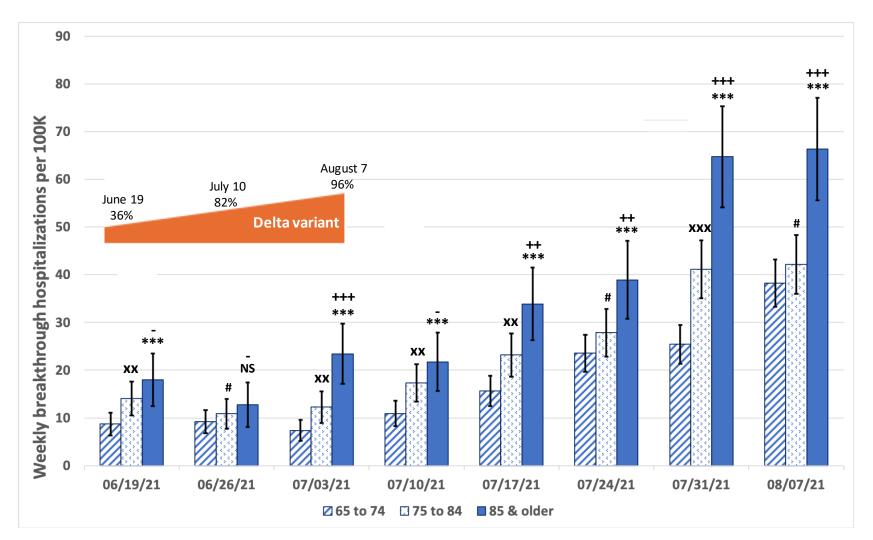
12



# Is Vaccine Protection Against Breakthrough Hospitalization Waning Over Time in the 65 Years and Older Cohort?



 VE against breakthrough hospitalization is significantly lower 5-6 months post vaccination than 3-4 months post vaccination


95% CI

P Breakthrough hospitalization rate for 5-6 months since vaccination > 3-4 months P < 0.001</p>

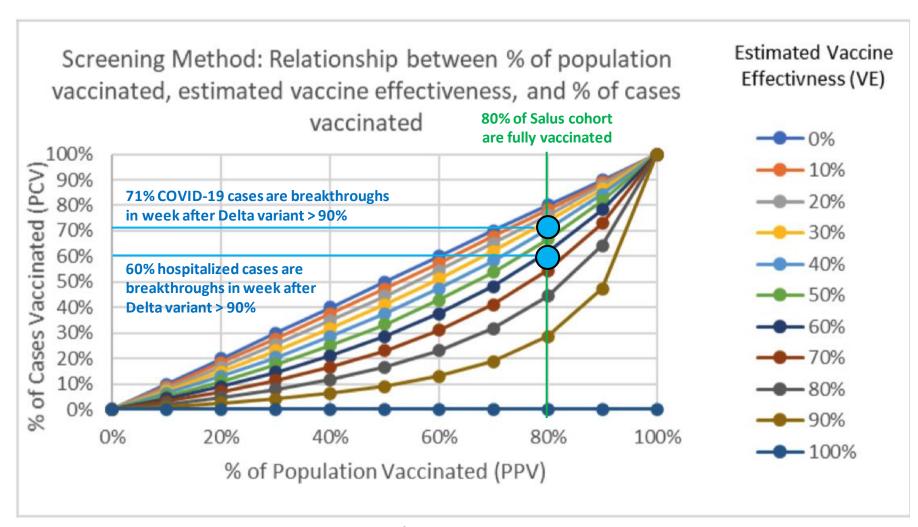




# Are there Age Differences in Vaccine Protection Against Breakthrough Hospitalizations in the 65 Years and Older Cohort?



Older age associated with increased breakthrough hospitalization rates


95% CI

|           | Over 85 > 75 to 84 | Over 85 > 65 to 74 | 75 to 84 ><br>65 to 74 |
|-----------|--------------------|--------------------|------------------------|
| P < 0.001 | +++                | ***                | xxx                    |
| P < 0.01  | ++                 | none               | xx                     |
| P < 0.05  | +                  | none               | х                      |
| P > 0.05  | -                  | NS                 | #                      |





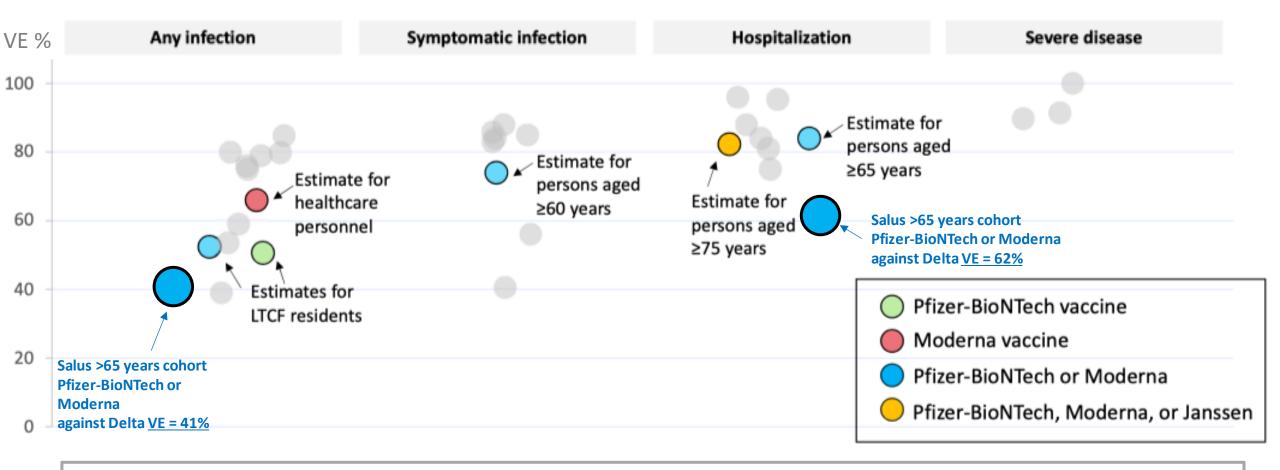
# What is the Vaccine Effectiveness Against the Delta Variant in the Salus Cohort? – Using the CDC Screening Approach



- 41% calculated VE against infection
- 62% calculated VE against hospitalization

#### **VE Screening method**

VE = 1 - [(PCV/(1-PCV))((1-PPV)/PPV)]

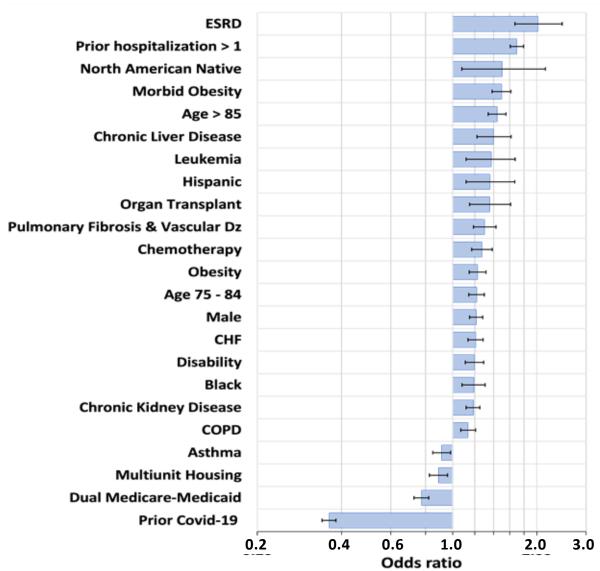

PCV = proportion cases vaccinated

PPV = proportion population vaccinated





## How Does mRNA Vaccine Effectiveness in 65+ Salus Cohort with 5.6M Vaccinees Compared to Published Estimates?




- VE of both mRNA vaccines in this 65+ cohort is lower than previously reported in smaller study sizes for both COVID-19 infection and hospitalization
- VE for mRNA vaccines is higher against hospitalization than against infection





### Risk Model for Breakthrough Hospitalization



- Risk of breakthrough hospitalization increases with time elapsed since mRNA vaccination with odds ratio increasing to 2.5 at 6 months post vaccination
- Prior COVID-19 infection has a major protective effect against breakthrough hospitalization
- There is a step up in risk in the 75-84 and again in the over 85 age categories compared to the 65-74 category
- Risk model can be used to stratify the over 65 population to best select those in most need of booster vaccine dose

Logistic Regression Model performance: AUROC 0.73, balanced accuracy 0.67

